Laser Ranging Ground System

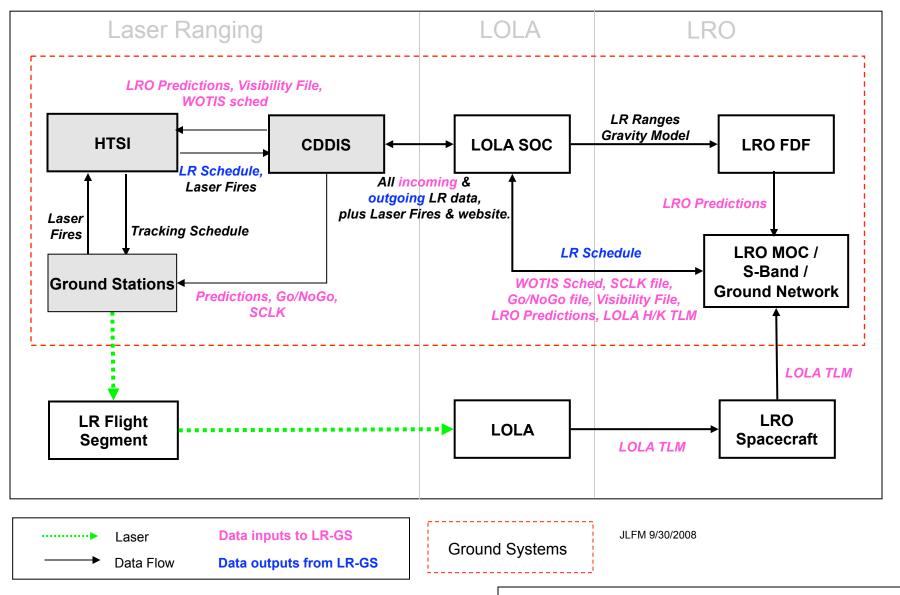
Progress

- Zimmerwald (Switzerland) and Herstmonceux (Gr.Britain) have been approved by the Selection Committee to participate as ground stations for LRO Laser Ranging. Mount Stromlo (Australia) has submitted a proposal and Wettzell (Germany) is also expected to turn in a proposal this month. Grasse (France), Matera (Italy), and Katsively (Ukraine) have also indicated an interest in participating.
- Design completed for modifications needed for MOBLAS-5 (Australia) and MOBLAS-6 (South Africa) to participate in LRO-LR. Timing board has been purchased and is in-hand. Testing in lab should occur this month.
- One-way system delay measurements are in progress at NGSLR. MLRS and Herstmonceux are also working this issue at their stations.
- All LR tests at NGSLR have been completed and passed with the exception of the independent timing test with Instrument Scientist. This will occur as soon as one-way system delay has been adequately determined.
- Document detailing the LR tests at NGSLR and results is in preparation and a presentation on this testing was given at the ILRS Workshop in Poland (Oct 13-17,2008).
- There were several presentations given on LRO-LR at the International Laser Ranging Workshop in Poznan, Poland (Oct 13-17). All of the participating ILRS stations were in attendance and we had good discussions with all of them.

Issues & Risks:

NENS to SCNS contractor change has potential to cause major disruption for LRO-LR.

Ground Station Characteristics

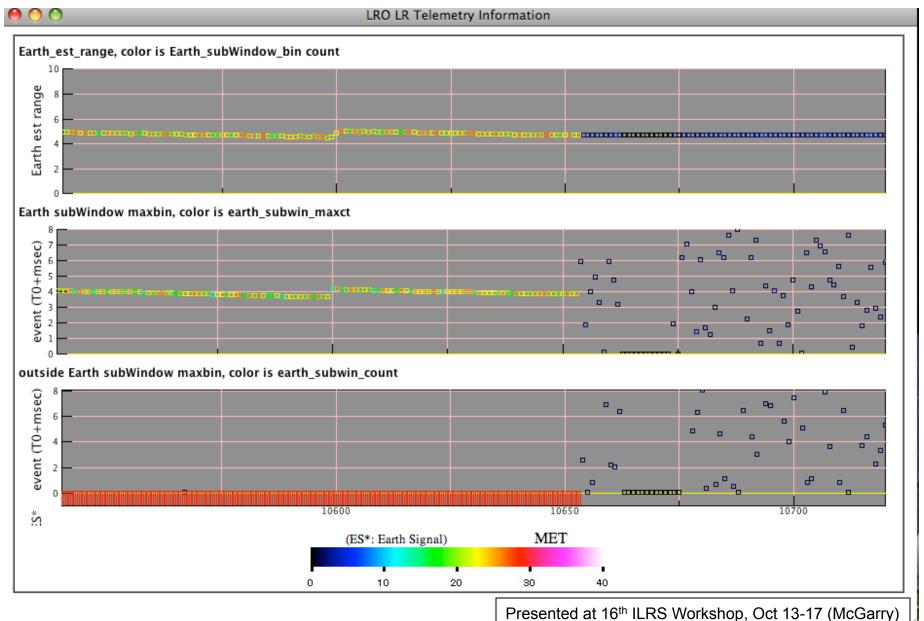

➤ Station fire rate and probable events per second in LOLA Earth Window with system configurations as we currently understand them:

			Energy per			
			Eve	Events/second		pulse at
LRO						
	Synch?	FireRate	in Earth Wind	dow	fJ/cm ²	
NGSLR	YES	28Hz	28		2 to 5	
MLRS	NO	10Hz	2 to 4		4 to 12	
Zimmerwald	YES	28Hz		28		2 to 10
Herstmonceux	YES	7 or 14Hz	7 or 14		1 to 3	
Mt Stromlo	YES	28Hz		28		3 to 14
MOBLAS	NO	5Hz	1 to 2		1 to 2	

Requirement: between 1 – 10 femtoJoules per square centimeter at LRO and between 1 and 28 events per second in LOLA Earth Window.

➤ Stations that can deliver energy densities of > 10 fJ/cm² or peak power of > 0.07 mW/cm² at LRO will need to modify their configuration. This will be worked out prior to predictions being available.

Laser Ranging Network Block Diagram



Presented at 16th ILRS Workshop, Oct 13-17 (McGarry)

Real-time Feedback from Spacecraft

- ➤ Website: http://lrolr.gsfc.nasa.gov hosted on CDDIS.
- > "Real-time" spacecraft telemetry display will be password protected.
- ➤ Delay from "real-time" will be between 10 30 seconds.
- > Stations can use display to determine if their fires are being detected at LRO/LOLA, and where their pulses are falling in the Earth Window.
- > Synchronously stations can use website to modify their fire times, if desired:
 - to move their returns earlier in LOLA Earth Window (pulse arrivals earlier in the window have a higher probability of detection because this is a single stop receiver)
 - to "scan" if LRO/LOLA is not detecting their pulses

Real-time telemetry website

