Laser Ranging Ground System

- Progress
- Zimmerwald (Switzerland) and Herstmonceux (Gr.Britain) have been approved by the Selection Committee to participate as ground stations for LRO Laser Ranging. Mount Stromlo (Australia) has submitted a proposal and Wettzell (Germany) is also expected to turn in a proposal this month. Grasse (France), Matera (Italy), and Katsively (Ukraine) have also indicated an interest in participating.
- Design completed for modifications needed for MOBLAS-5 (Australia) and MOBLAS-6 (South Africa) to participate in LRO-LR. Timing board has been purchased and is in-hand. Testing in lab to start shortly.
- One-way system delay measurements are in progress at NGSLR. MLRS and Herstmonceux are also working this issue at their stations.
- All LR tests at NGSLR have been completed and passed with the exception of the independent timing test with Instrument Scientist. This will occur as soon as one-way system delay has been adequately determined.
- Document detailing the LR tests at NGSLR and results is in preparation and a presentation on this testing was given at the ILRS Workshop in Poland (Oct 13-17,2008).
- There were several presentations given on LRO-LR at the International Laser Ranging Workshop in Poznan, Poland (Oct 13-17). All of the participating ILRS stations were in attendance and we had good discussions with all of them.
- Issues \& Risks:
- Disruption to LRO-LR due to NENS to SCNS contract change.

Ground Station Characteristics

$>$ Station fire rate and probable events per second in LOLA Earth Window with system configurations as we currently understand them:
Energy per
Events/second \quad pulse at

LRO
NGSLR
MLRS
Zimmerwald
Herstmonceux
Mt Stromlo MOBLAS

Synch?	FireRate	in Earth Window	$\mathrm{fJ} / \mathrm{cm}^{2}$		
	28 Hz	28		2 to 5	
NO	10 Hz	2 to 4		4 to 12	
YES	28 Hz		28		2 to 10
YES	7 or 14 Hz	7 or 14		1 to 3	
YES	28 Hz		28		3 to 14
NO	5 Hz	1 to 2		1 to 2	

Requirement: between 1 - 10 femtoJoules per square centimeter at LRO and between 1 and 28 events per second in LOLA Earth Window.
$>$ Stations that can deliver energy densities of $>10 \mathrm{fJ} / \mathrm{cm}^{2}$ or peak power of $>0.07 \mathrm{~mW} / \mathrm{cm}^{2}$ at LRO will need to modify their configuration. This will be worked out prior to predictions being available.

Laser Ranging Network Block Diagram

Real-time Feedback from Spacecraft

$>$ Website: http://Irolr.gsfc.nasa.gov hosted on CDDIS.
> "Real-time" spacecraft telemetry display will be password protected.
> Delay from "real-time" will be between $10-30$ seconds.
$>$ Stations can use display to determine if their fires are being detected at LRO/LOLA, and where their pulses are falling in the Earth Window.
> Synchronously stations can use website to modify their fire times, if desired:

- to move their returns earlier in LOLA Earth Window (pulse arrivals earlier in the window have a higher probability of detection because this is a single stop receiver)
- to "scan" if LRO/LOLA is not detecting their pulses

Real-time telemetry website

Earth_est_range, color is Earth_subWindow_bin count

Earth subWindow maxbin, color is earth_subwin_maxct

outside Earth subWindow maxbin, color is earth_subwin_count

