The First ILRS Laser Transponder Mission: Laser Ranging to NASA's Lunar Reconnaissance Orbiter (LRO)

Jan McGarry (NASA/GSFC)
Mark Torrence (SGT)
Dandan Mao (SigmaSpace)
David Skillman (NASA/GSFC)
Christopher Clarke (Honeywell)
Julie Horvath (Honeywell)

David E. Smith and Maria Zuber (MIT), LOLA/LR PIs
Xiaoli Sun (NASA/GSFC), LOLA/LR Co-I & Instrument Scientist
Gregory Neumann (NASA/GSFC), LOLA/LR Co-I & Science Team
Abstract:
Since the launch in June 2009 of LRO, Laser Ranging (LR) to LRO has been a huge success, accumulating over 1000 hours of one-way laser ranging data. The participation of the global community of stations has been a very large part of that success. Ten stations around the world contribute to the ranging data, including NASA's Next Generation Satellite Laser Ranging (NGSLR) system, McDonald Laser Ranging System, many of the NASA MOBLAS systems, and four European stations. A brief overview of the LRO-LR technique will be followed by a summary of the results to date. Details of the data since launch will be given in a related poster.
Lunar Reconnaissance Orbiter (LRO) – Laser Ranging (LR) Overview

Sub-network of ILRS supports LRO for one-way laser ranging

- Transmit 532 nm laser pulses at <= 28Hz to LRO
- Time stamp departure times at ground station
- Event arrival times recorded by LOLA
- Compute relative 1-way range to LRO from the two pieces of data

LRO Mission Includes:
- LOLA, laser altimeter
- LROC, camera
- LAMP, Lyman alpha telescope
- LEND, neutron detector
- DIVINER, thermal radiometer
- CRATER, cosmic ray detector
- mini-RF, radar tech demo
One LOLA Detector does both Earth and Lunar

- Two range windows in one detector: fixed 8 msec earth and up to 5 msec lunar.

- Range to LRO changes ~ 5-10 ms over an hour’s visibility.

- Need to either synchronize the ground laser fires to LOLA to ensure pulses land in every Earth Window, or fire asynchronously to LOLA (eg 10Hz).
Real-time Feedback from Spacecraft

- Website information constructed at LOLA SOC and hosted on CDDIS.

- Delay from “real-time” is nominally between 10 – 30 seconds, although it can occasionally be minutes delayed.

- Stations can use display to determine if their fires are being detected at LRO/LOLA, and where their pulses are falling in the Earth Window.

- Asynchronous stations use the website to adjust angular biases.

- Synchronous stations use website to modify their fire times as desired:
 - to move their returns earlier in LOLA Earth Window (pulse arrivals earlier in the window have a higher probability of detection because this is a single stop receiver),
 - or later, if ranging simultaneously with another station.
 - to “scan” if LRO/LOLA is not detecting their pulses
Real-time telemetry website

NGSLR Data

Data from 1 second
LOLA H/K packets
Stations Supporting LR

<table>
<thead>
<tr>
<th>Station</th>
<th>Location</th>
<th>Synch to LOLA?</th>
<th>Frirerate (Hz)</th>
<th>Max # / sec in LOLA window</th>
<th>Expected energy at LRO (TJ / sqcm)</th>
<th>Station Frequency Source</th>
<th>Date of first successful ranging to LRO</th>
<th>LR Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLRS, McDonald</td>
<td>Texas, US</td>
<td>No</td>
<td>10</td>
<td>2 to 4</td>
<td>1 to 10</td>
<td>Cesium</td>
<td>02-Jul-2009</td>
<td>Operational</td>
</tr>
<tr>
<td>MOBLAS-7, Greenbelt</td>
<td>Maryland, US</td>
<td>No</td>
<td>10</td>
<td>2 to 4</td>
<td>1 to 3</td>
<td>Cesium</td>
<td>02-Jul-2009</td>
<td>Engineering testbed</td>
</tr>
<tr>
<td>Herstmonceux</td>
<td>Great Britain</td>
<td>Yes</td>
<td>14</td>
<td>14</td>
<td>1 to 3</td>
<td>Maser (13-May-2010)</td>
<td>13-Jul-2009</td>
<td>Operational</td>
</tr>
<tr>
<td>Zimmerwald</td>
<td>Switzerland</td>
<td>Yes</td>
<td>14</td>
<td>14</td>
<td>1 to 3</td>
<td>Ovenized crystal oscillator</td>
<td>20-Jul-2009</td>
<td>Operational</td>
</tr>
<tr>
<td>Weltzell, MOBLAS-6, Hartbeeshoek</td>
<td>Germany, South Africa</td>
<td>No</td>
<td>7</td>
<td>7</td>
<td>1 to 10</td>
<td>Cesium</td>
<td>30-Oct-2009</td>
<td>Operational</td>
</tr>
<tr>
<td>MOBLAS-5, Yarragadee</td>
<td>Australia</td>
<td>No</td>
<td>10</td>
<td>2 to 4</td>
<td>1 to 3</td>
<td>Maser</td>
<td>25-Jan-2010</td>
<td>Operational</td>
</tr>
<tr>
<td>MOBLAS-4, Monument Peak</td>
<td>California, US</td>
<td>No</td>
<td>10</td>
<td>2 to 4</td>
<td>1 to 3</td>
<td>GPS steered Rubidum</td>
<td>03-Feb-2010</td>
<td>Operational</td>
</tr>
<tr>
<td>Grasse/MEO</td>
<td>France</td>
<td>No</td>
<td>10</td>
<td>2 to 4</td>
<td>1 to 10</td>
<td>Cesium</td>
<td>18-May-2010</td>
<td>Operational</td>
</tr>
</tbody>
</table>

This information and more can be found at: http://lrolr.gsfc.nasa.gov
Summary of LR Data

Total LR data from all stations (7 May 2011): 62074 mins = 1078 hrs

FIRSTS
- Ranging (success on 1st attempt): 30Jun2009 (GO1L)
- 3-way simultaneous: 01Nov2010 (GO1L,MDOL,MONL)
- 4-way simultaneous: 11Mar2011 (GO1L,GODL,MDOL,MONL)
- Lasercom preliminary test: 10May2011 (GO1L)

Data Summary

<table>
<thead>
<tr>
<th>Station</th>
<th># mins</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO1L</td>
<td>28334</td>
<td>0.456</td>
</tr>
<tr>
<td>GODL</td>
<td>2524</td>
<td>0.041</td>
</tr>
<tr>
<td>MDOL</td>
<td>8203</td>
<td>0.132</td>
</tr>
<tr>
<td>HERL</td>
<td>776</td>
<td>0.013</td>
</tr>
<tr>
<td>ZIML</td>
<td>533</td>
<td>0.009</td>
</tr>
<tr>
<td>WETL</td>
<td>66</td>
<td>0.001</td>
</tr>
<tr>
<td>HARL</td>
<td>341</td>
<td>0.005</td>
</tr>
<tr>
<td>YARL</td>
<td>11038</td>
<td>0.178</td>
</tr>
<tr>
<td>MONL</td>
<td>9192</td>
<td>0.148</td>
</tr>
<tr>
<td>GRSM</td>
<td>1067</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Ranging Data in LOLA EarthWindow

ZIML, GRSM: (8064) 6 Apr 13:28Z

GO1L, MONL, MDOL: (8161/8162) 14 Apr 05:01Z

2-way simultaneous in 2011

3-way simultaneous in 2011
Putting Laser Pulses in the LR RFOV

Red lines represent location of pulses in RFOV for passes where LRO is visible to station above their min elevation limit (normally 20 deg).

- Blue lines are limits on RFOV. Bottom line is center, top is edge of FOV.
- High Gain Antenna (HGA) pointing accuracy is nominally 0.1 deg, so pointing errors could easily remove many of HERL’s passes.

See LRO-LR poster for all stations
Science Results

• LR data used to determine onboard clock drift rate and aging.

• Work in progress for use in generating a more accurate LRO orbit.

• Geometric solution for spacecraft position in progress (with 3-way LR).

• Plan in works to use LR for Time Transfer between stations.

See LRO-LR poster for all stations
Laser Navigation Demonstration
Geometric Solution for Spacecraft Position using 3-way simultaneous LR

- NGSLR, McDonald Obs., and Monument Peak all ranged to LRO on same pass on 2 Nov 2010.

- A geometric solution was then obtained to determine the location of the LRO in 3 dimensions from the knowledge of the station positions and the ranges.

Accuracy of solution using this baseline:
- range ~0.5 meters
- cross-range RA direction ~ 50 meters
- cross-range Dec direction ~ 350 meters (due to weak north-south baseline).

If we had 6000km baselines we would get 5 meters in the cross-range directions (Ra/Dec) and about 0.5 meters in range.
Lasercom over LR

- Preliminary lasercom experiment performed on 10 May 2011 from NGSLR by Xiaoli Sun, Dave Skillman, et al.

- NGSLR wrote the words “LRO-LR” in LOLA Earth Window. MOBLAS-7 is the parabolic curve in the plot.
Two-Way Asynchronous Laser Transponder Ranging from NASA’s 1.2 m Telescope

Multi-user arcsecond precision tracking telescope at the Goddard Geophysical and Astronomical Observatory (GGAO).

- Has supported many successful experiments including in 2005:
 - 2-way ranging to Mercury Laser Altimeter (MLA) on MESSENGER (24 Mkm), and
 - 1-way ranging to Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor (orbiting Mars at 80 Mkm).

Ground Team Lead for all experiments was Tom Zagwodzki (NASA/GSFC)
LOLA 2-Way Ranging: Sep 13 2009
Plot of LOLA received events on scan location

LOLA receiver captures laser pulses from ground

Colors represent 5 LOLA detectors

Spacecraft scan is black line

Neumann (GSFC)
LOLA 2-Way Ranging: Sep 13 2009
Plot of ground received events on LRO scan location

Ground receiver captures laser pulses from LOLA

5 laser spots can be seen:
Summary

• One-way (uplink only) laser transponders have now been proven to work operationally (currently going on 2 years of operations).

• Two-way asynchronous transponders have been successfully demonstrated at planetary distances.

• LRO-LR has been very successful thanks to support of ILRS.

• LRO will be moved from 50 km circular mission orbit to reduced maintenance elliptical orbit late in 2011. LR is expected to continue at least through FY12.

• More interesting science and technology is still to come from LRO-LR!

Transponder WG Meeting today at 17:00