Women in Science and Engineering: EXPLORING WHAT AMAZES US

Kathie L. Olsen, Ph.D. (K. L. Olsen)
Senior Advisor for Human Capital

Ann B. Carlson, Ph.D. (A. B. Carlson)
Senior Staff Associate
National Science Foundation

Women in Astronomy and Space Science 2009
October 22, 2009
Solving the Maze – “Are we there yet?”

• National Research Council
 - From Scarcity to Visibility: Gender Differences in the Careers of Doctoral Scientists and Engineers (2001)
 - Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering (2006)
 - Gender Differences at Critical Transitions in the Careers of Science, Engineering, and Mathematics Faculty (2009)
 - More. See...
 • Committee on Women in Science, Engineering and Medicine
 • Committee on Science, Engineering and Public Policy
Solving the Maze - “Are we there yet?”

- **Federal Agencies**
 - **NSF**
 - Gender Differences in the Careers of Academic Scientists and Engineers (2003)
 - Thirty-Three Years of Women in S&E Faculty Positions (2008)
 - **NIH**
 - National Leadership Workshop on Mentoring Women in Biomedical Careers (2007: workshop report)
 - **NSF, NIH, DOE**
 - Workshop on Building Strong Academic Chemistry Departments Through Gender Equity (2006: workshop report)
Solving the Maze - “Are we there yet?”

• **Other**
 - Nepotism and Sexism in Peer Review (Wennerås and Wold, Nature 387/22, 1997)
 - Land of Plenty: Diversity as America’s Competitive Edge in Science, Engineering and Technology (2000, Commission on the Advancement of Women and Minorities in Science, Engineering and Technology Development—Morella Commission)
 - She Figures 2006: European Commission statistics
 - Many more!
Why Can’t we Break Out of the Maze?

K. L. Olsen
A. B. Carlson

One Path at a Time
Both men and women are significantly more likely to rank a perceived man higher than a perceived woman, using identical resumes.

Unconscious Bias: Impact of Blind Auditions

- Based on audition records of 14,000 individuals & rosters from symphony orchestras: 1970-1996:
 - The audition data show the use of a screen
 - increases the probability that a woman will advance from preliminary rounds by 50%
 - The roster data show the switch to blind auditions
 - accounts for 30% of the increase in the proportion of women among new hires

Why Can’t we Break Out of the Maze?

My High School!

One Path at a Time
WE HAVE MADE PROGRESS
High school graduates completing advanced mathematics courses, by sex and race/ethnicity: 2005

SOURCES: National Center for Education Statistics, National Assessment of Educational Progress, 2005 High School Transcript Study; and National Science Foundation, Division of Science Resources Statistics, special tabulations. See appendix table 1-9.

Science and Engineering Indicators 2008

AP = Advanced Placement; IB = International Baccalaureate.
High school graduates completing advanced S&E courses, by sex and race/ethnicity: 2005

SOURCES: National Center for Education Statistics, National Assessment of Educational Progress, 2005 High School Transcript Study; and National Science Foundation, Division of Science Resources Statistics, special tabulations. See appendix table 1-10.
Freshman Year!

- About 25-30% of students entering college intend to major in S&E field
 - Fewer than 50% of those intended complete S&E degree in five years
- Preparation of those interested in S&E study
 - 20% need remediation in math
 - 10% need remediation in science
Why Can’t we Break Out of the Maze?

MY MATH TA’S

One Path at a Time
WE HAVE MADE PROGRESS
Perceptions Matter!

- FACULTY: Where are my role models?
- “Can I see myself as a scientist or engineer?”
- “What kind of job can I get if I major in science or engineering?”
- The messages that female students receive shape their choices!
Why Can’t we Break Out of the Maze?

One Path at a Time
Because
SCIENCE & ENGINEERING IS A GREAT CAREER
S&E Unemployment Rates Usually Lower than Overall Rate
Increased Demand for Highly Skilled Workforce

Even in times of economic uncertainty, S&E jobs will continue to be in-demand, especially in the energy sector.

Projected increase in employment, for S&E and selected other occupations: 2004–14

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer/mathematical scientists</td>
<td>36.5</td>
</tr>
<tr>
<td>Post-secondary teachers</td>
<td>28.1</td>
</tr>
<tr>
<td>Health practitioners/technicians</td>
<td>23.4</td>
</tr>
<tr>
<td>All S&E</td>
<td>21.8</td>
</tr>
<tr>
<td>Life scientists</td>
<td>17.8</td>
</tr>
<tr>
<td>S&E managers</td>
<td>17.1</td>
</tr>
<tr>
<td>Social scientists</td>
<td>16.8</td>
</tr>
<tr>
<td>Engineers</td>
<td>16.2</td>
</tr>
<tr>
<td>All occupations</td>
<td>15.8</td>
</tr>
<tr>
<td>S&E technicians</td>
<td>11.7</td>
</tr>
<tr>
<td>Physical scientists</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Science and Engineering Indicators 2008
Mean Annual Salaries of S&E Degree Holders 1-5 Years After Degree

Figure 3-8
Mean salaries of S&E and S&E-related degree recipients 1–5 years after degree, by field and level of highest degree: 2003

Dollars (thousands)

Science and Engineering Indicators 2008
Women & Minorities are underrepresented in science & engineering workforce

• In 2001, women were approximately 40% of the workforce but less than 20% of the S&E workforce

• Minorities were approximately 10% of the workforce but represented about 5% or less of the S&E workforce

Source: Council on Competitiveness US Competitiveness 2001
Representation of women in US graduate programs by field of science 1972-2001
Female S&E graduate students: 1995 and 2005

Doctoral Degrees Earned by Women
1985, 1995, 2005

Percent

- Non-S&E
- Social/behavioral sciences
- Life sciences
- Physical sciences
- Math/computer sciences
- Engineering

NOTES: Physical sciences include earth, atmospheric, and ocean sciences. Life sciences include biological sciences, agricultural sciences, and medical/other life sciences.

Some Statistics

- 94 percent of full professors in science and engineering are white; 90 percent are male.
- 91 percent of the full professors at research universities are white; 75 percent are male.
- 87 percent of the full-time faculty members in the United States are white; 64 percent are male.
- Only 5 percent of the full professors in the U.S. are black, Hispanic, or Native American.
- The gap between the percentage of tenured men and the percentage of tenured women has not changed in 30 years.

Trower and Chait, Harvard University Mag. (March-April, 2002)
Share of doctoral S&E faculty positions held by women, by rank: Selected years, 1973–2006

NOTE: Junior faculty includes assistant professors and instructors.

SOURCE: National Science Foundation, Division of Science Resources Statistics, Survey of Doctorate Recipients, special tabulations (preliminary data for 2006).
Why Can’t we Break Out of the Maze?

MY EXODUS and Yes, I can Type!

One Path at a Time
WE HAVE MADE PROGRESS
Interesting Statistics Comparing 30 yrs

- Women currently represent 36% of full-time faculty compared to 23% in the early 1970s.

- Women constitute only 25% of the full-time faculty at research universities, versus 10% in 1970.

- Faculty of color remain a very small part of the professoriate. (Whites constituted 95% of all faculty members in 1972 and 83% in 1997.)
 - 4.4% in 1975 and 5 percent in 1997—and almost half of all Black faculty teach at historically black colleges.
 - 1.4% in 1975 to 2.8% in 1997 for Hispanic faculty.

- While a popular explanation of the problem holds that there are insufficient numbers of women and minorities on the pathway from graduate student to faculty member. Academics label this the "pipeline problem."
 - true for minorities
 - false for women.

Source: Nelson & Rogers, 2004. A National Analysis of Diversity in Science and Engineering Faculty at Research Universities
Researchers in Higher Education in Europe (% Female)

<table>
<thead>
<tr>
<th></th>
<th>Natural Sciences</th>
<th>Engineering and Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>48</td>
<td>29</td>
</tr>
<tr>
<td>Ireland</td>
<td>44</td>
<td>25</td>
</tr>
<tr>
<td>U.K.</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>Italy</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Finland</td>
<td>29</td>
<td>19</td>
</tr>
<tr>
<td>Sweden</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>France</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>Denmark</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Austria</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Germany</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Belgium</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: European Commission, Eurostat
*Data from late 1990s.
Why Can’t we Break Out of the Maze?

Questions no longer asked???

One Path at a Time
WE HAVE MADE PROGRESS
Effect of Marital Status and Children

Women as a Percentage of Full Time Faculty in Science, Engineering and Health

- Married
- Not married
- With children in the home
- No children in the home

Source: 33 Years of Women in S&E Faculty Positions (NSF 08-308)
NSF Earth Sciences Postdoctoral Fellowships Program (revision announced 10-7-09)

- Award information includes the statement that Fellows may request a no-cost extension for parental leave for the birth or adoption of children.
- Award information includes a statement that Fellows may request to use two months of their stipend for paid parental leave.
Why Can’t we Break Out of the Maze?

$16,000-$20-$40-$60-

One Path at a Time
Table 3-13

Median annual salary of individuals in S&E occupations, by sex, race/ethnicity, and visa status: Selected years, 1993–2003

(Dollars)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1993</th>
<th>1995</th>
<th>1997</th>
<th>1999</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&E employed</td>
<td>48,000</td>
<td>50,000</td>
<td>55,000</td>
<td>60,000</td>
<td>66,000</td>
</tr>
<tr>
<td>Male</td>
<td>50,000</td>
<td>52,000</td>
<td>58,000</td>
<td>64,000</td>
<td>70,000</td>
</tr>
<tr>
<td>Female</td>
<td>40,000</td>
<td>42,000</td>
<td>47,000</td>
<td>50,000</td>
<td>53,000</td>
</tr>
<tr>
<td>White</td>
<td>48,000</td>
<td>50,500</td>
<td>55,000</td>
<td>61,000</td>
<td>67,000</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>48,000</td>
<td>50,000</td>
<td>55,000</td>
<td>62,000</td>
<td>70,000</td>
</tr>
<tr>
<td>Black</td>
<td>40,000</td>
<td>45,000</td>
<td>48,000</td>
<td>53,000</td>
<td>58,000</td>
</tr>
<tr>
<td>Hispanic</td>
<td>43,000</td>
<td>47,000</td>
<td>50,000</td>
<td>55,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Temporary residents</td>
<td>43,300</td>
<td>49,700</td>
<td>49,000</td>
<td>52,000</td>
<td>60,000</td>
</tr>
</tbody>
</table>

NOTE: 2003 data includes some individuals with multiple races in each category.
Science and Engineering Indicators 2008
Median annual salaries of employed scientists and engineers, by broad occupation and sex: 1999
ADVANCE; Why do we need it?

- Program Goal: Increase the participation and advancement of women at all levels in academic science and engineering careers.
- Since 2000 ... Are we there yet?
NSF ADVANCE Program

Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers

- Three program levels
 - **Institutional Transformation (IT)**
 - “The big one”: Comprehensive, institution-wide change!
 - $2 M to $5 M total over 5 years
 - **Institutional Transformation Catalyst (IT-Catalyst)**
 - Early planning and assessment activities to prepare for transformational activities
 - $100 K to $200 K total for 2 years
 - **ADVANCE-PAID**
 - Helps institutions adopt successful practices demonstrated by other institutions
 - One year to five year projects; funding depends on the scope of the project

- Awards made every two years
Small IT awards to promote promising practices:
- Duke University
- New Jersey Institute of Technology
- Marshall University
- University of Maryland, Eastern Shore
NIH Women in Biomedical Careers Initiative

- Funding 14 grants focusing on factors that influence the careers of women in biomedical and behavioral science and engineering (Oct 2009)
- Influences on women's career choices: family and economic factors, institutional environments, and broader social and cultural issues
- Role mentoring and funding support throughout women's academic careers
- Impact of family-friendly policies on retention
- Underrepresented and financially disadvantaged women also examined
• Catalyst Study (1996): Survey of 1251 executive women who hold titles of vice president or above in Fortune 1000 companies - Most Effective Strategies for Overcoming Workplace Barriers
• #1 Strategy: Consistently exceed performance expectations
• #2: Develop style that men are comfortable with
• #3: Seek difficult or high-visibility assignments
• #4: Have an influential mentor
• ...

(Breaking the Glass Ceiling)
Why Can’t we Break Out of the Maze?

One Path at a Time
Enhance Visibility for Women Scientists and Engineers

• Enhance visibility through Presidential events
 - The Presidential Award for Excellence in Science, Math, and Engineering Mentoring (PAESMEM) **
 • recognize outstanding mentoring efforts/programs designed to enhance the participation of underrepresented groups
 - Presidential Early Career Award for Beginning Scientists and Engineers (PCASE)
 - Presidential Medal of Science (U.S. Nobel!)**
 - Waterman Award **
 - ** if you don’t nominate!!!
“The only way to discover the limits of the possible is to go beyond them ... into the impossible.”

Arthur C. Clarke
ADVANCE is a “NSF-wide” program
- The Assistant Directors (ADs) of each participating directorate reviews and approves the program solicitation and management plan
- Program funds are located in the participating directorates and offices

ADVANCE Implementation Committee (AIC)
- One or more representatives from each participating Directorate and Office
- Acts as an advisory committee
- Meets monthly to discuss program management and related issues
NSF EHR: Innovation through Institutional Integration – I3

Goals of I3:

• Creative integration of NSF awards
• Increase synergy and collaboration across NSF-funded projects and within/between institutions
• Expand and deepen the footprints of NSF-funded projects and enhance their sustainability